设3阶矩阵A与B相似,且A的特征值是1,2,3,则|E+B|=什么?B的伴随矩阵B*的迹tr B*=什么?

设3阶矩阵A与B相似,且A的特征值是1,2,3,则|E+B|=什么?B的伴随矩阵B*的迹tr B*=什么?

题目
设3阶矩阵A与B相似,且A的特征值是1,2,3,则|E+B|=什么?B的伴随矩阵B*的迹tr B*=什么?
答案
因为A的特征值是1,2,3, B与A相似
所以B的特征值是1,2,3
所以 E+B 的特征值为 1+1=2,1+2=3,1+3=4
所以 |E+B| = 2*3*4 = 24.
又 |B| = 1*2*3 = 6
B* 的特征值为 6/1=6, 6/2=3, 6/3=2.
所以 tr(B*) = 6+3+2 = 11.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.