若a+b+c=1,则√(3a+1)+√(3b+1)+√(3c+1)的最大值是多少

若a+b+c=1,则√(3a+1)+√(3b+1)+√(3c+1)的最大值是多少

题目
若a+b+c=1,则√(3a+1)+√(3b+1)+√(3c+1)的最大值是多少
答案
换元法,令√(3a+1)=A,√(3b+1)=B,√(3c+1)=C
则A,B,C均非负.
则A²+B²+C²=3(a+b+c)+3=6
又A²+B²+C²≥AB+BC+CA
∴(A+B+C)²=A²+B²+C²+2(AB+BC+CA)≤3(A²+B²+C²)=18
当且仅当A=B=C时等号成立
∴ A+B+C≤3√2
即√(3a+1)+√(3b+1)+√(3c+1)的最大值是3√2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.