计算∫[0,ln2]√(e^x-1)dx
题目
计算∫[0,ln2]√(e^x-1)dx
答案
计算[0,ln2]∫√(e^x-1)dx
令√(e^x-1)=u,则e^x-1=u²,e^x=u²+1,e^xdx=2udu,dx=[2u/(u²+1)]du,
x=0时u=0,x=ln2时u=e^(ln2)-1=2-1=1
故原式=[0,1]2∫[u²/(u²+1)]du=[0,1]2∫[1-1/(u²+1)]du=2(u-arctanu)︱[0,1]
=2[1-π/4]=2-π/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点