数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
题目
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
答案
a(n+1)+an=4n-3,an+a(n-1)=4(n-1)-3故a(n+1)-a(n-1)=4,n≥2 a1=2,a2=-1
n为奇数时an=2+(n-1)/2*4=2n,a(n-1)=-1+(n-1)/2*4=2n-5
Sn=(2+2n)*(n+1)/2/2+(-1+2n-5)*(n-1)/2/2 =n^2-n+2
n为偶数时Sn=n^2+n/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点