证明邻补角的平分线互相垂直
题目
证明邻补角的平分线互相垂直
答案
设∠AOB与∠BOC为邻补角,则∠AOB+∠BOC=180°
∠AOB的平分线OP,∠BOC的平分线OQ,则
∠POQ=∠POB+∠BOQ=(1/2)(∠AOB+∠BOC)
=(1/2)*180°=90°
∴PO⊥QO,即邻补角的平分线互相垂直
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点