曲线y=1/(x^2)的切线被两坐标系所截线段的最短长度

曲线y=1/(x^2)的切线被两坐标系所截线段的最短长度

题目
曲线y=1/(x^2)的切线被两坐标系所截线段的最短长度
答案
先对曲线求导数y'=-2/x^3,再设曲线的切线方程为Y-y=y'(X-x)将y'代入切线方程,化简后得到
Y=-1/x^2(X/x+3),该切线与两坐标的截距分别是Y=3/x^2X=-3x,因此根据勾股定理,所截线段的长度为L=根号(Y^2+X^2),将两截距带入,得到L=3根号[(1/x^2+x)-1/x],观察该式,若L最短,根号下面的平方为零,所以x=-1,所以切点为(-1,1),所截线段最短长度L=3.这里要注意一点,求切线方程的时候,原来的曲线方程要记得用上.希望对你有用,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.