如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( ) A.PB⊥AD B.平面PAB⊥平面PBC C.直线BC∥平面PAE D.直线PD与平面AB
题目
如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是( )
A. PB⊥AD
B. 平面PAB⊥平面PBC
C. 直线BC∥平面PAE
D. 直线PD与平面ABC所成的角为45°
答案
∵AD与PB在平面的射影AB不垂直,
所以A不成立,又,平面PAB⊥平面PAE,
所以平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,
∴直线BC∥平面PAE也不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,
故选D.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点