数论:证明:二元一次不定方程ax+by=N,的非负整数解为[N/ab]或[N/ab]+1,其中a>0,b>0,(a,b)=1.

数论:证明:二元一次不定方程ax+by=N,的非负整数解为[N/ab]或[N/ab]+1,其中a>0,b>0,(a,b)=1.

题目
数论:证明:二元一次不定方程ax+by=N,的非负整数解为[N/ab]或[N/ab]+1,其中a>0,b>0,(a,b)=1.
答案
若方程组无解,那么N=ab,则N-a,N-2a,……,N-ab都是非负整数且模b两两不同余,所以其中必有一个能被b整除,方程就有解).所以下面假定方程组至少存在一组解(x0,y0)的情况.
于是原方程化成ax+by=N=ax0+by0.这就是a(x-x0)=b(y0-y)
所以a|b(y0-y).又a b互质,所以必有a|(y0-y).所以存在整数k使得y0-y=ak.进而x-x0=bk.于是得x=x0+bk,y=y0-ak.这也是方程的通解形式
现在要求x0+bk>=0,y0-ak>=0.即-x0/b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.