△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.

△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.

题目
△ABC的三个内角A、B、C的对边分别是a、b、c,如果a2=b(b+c),求证:A=2B.
答案
证明:由正弦定理可知,a=2RsinA,b=2RsinB,c=2RsinC,代入a2=b(b+c)中,
得sin2A=sinB(sinB+sinC)
∴sin2A-sin2B=sinBsinC
1−cos2A
2
-
1−cos2B
2
=sinBsin(A+B)
1
2
(cos2B-cos2A)=sinBsin(A+B)
∴sin(A+B)sin(A-B)=sinBsin(A+B),
因为A、B、C为三角形的三内角,
所以sin(A+B)≠0.所以sin(A-B)=sinB.
所以只能有A-B=B,即A=2B.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.