已知A是3阶矩阵,|A|>0,A*=﹛1 -1 -4﹜,且ABA-¹=BA-¹+3E,求矩阵B.

已知A是3阶矩阵,|A|>0,A*=﹛1 -1 -4﹜,且ABA-¹=BA-¹+3E,求矩阵B.

题目
已知A是3阶矩阵,|A|>0,A*=﹛1 -1 -4﹜,且ABA-¹=BA-¹+3E,求矩阵B.
答案
由 |A*| = 4 = |A|^2,|A|>0
所以 |A| = 2.
由 AA* = A*A = |A|E = 2E
在等式 ABA^-1=BA^-1+3E 两边左乘 A*,右乘A,得
A*ABA^-1A=A*BA^-1A+3A*A
所以 2B = A*B+6E
所以 (2E-A*)B = 6E
所以 B = 6(2E-A*)^-1
2E-A* = diag(1,3,6)
(2E-A*)^-1 = diag(1,1/3,1/6)
B = 6(2E-A*)^-1 = diag(6,2,1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.