梯形ABCD中,AB//CD,AB=m,CD=n,E、F分别是AB、CD的中点,又AF、ED交于点G,BF、CE交于点H,求:GH=?
题目
梯形ABCD中,AB//CD,AB=m,CD=n,E、F分别是AB、CD的中点,又AF、ED交于点G,BF、CE交于点H,求:GH=?
必须用平行线原理证明
答案
AB//BC,则AE/DF=EG/GD;BE/CF=EH/HC.
又AE=BE/DF=CF,故:EG/GD=EH/HC=BE/CF=0.5m/0.5n=m/n.
则:GH//DC;且GH/DC=EG/ED=m/(m+n).
所以,GH=[m/(m+n)]*DC=mn/(m+n).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点