将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式1/2(|a-b|+a+b)中进行计算,求出其结果,50组数代入后可求得

将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式1/2(|a-b|+a+b)中进行计算,求出其结果,50组数代入后可求得

题目
将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式
1
2
(|a-b|+a+b)
答案
①若a≥b,则代数式中绝对值符号可直接去掉,
∴代数式等于a,
②若b>a则绝对值内符号相反,
∴代数式等于b
由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b无关)
既然是求和,那就要把这五十个数加起来还要最大,
我们可以枚举几组数,找找规律,
如果100和99一组,那么99就被浪费了,
因为输入100和99这组数字,得到的只是100,
如果我们取两组数字100和1一组,99和2一组,
则这两组数字代入再求和是199,
如果我们这样取100和99 2和1,
则这两组数字代入再求和是102,
这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,
由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,
这样最终求得五十个数之和最大值就是五十个数字从51到100的和,
51+52+53+…+100=3775.
故答案为:3775.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.