一道数学题百思不得其解~

一道数学题百思不得其解~

题目
一道数学题百思不得其解~
设P为三角形ABC所在平面内的任一点,记BC=a,CA=b,AB=c,PA=u,PB=v,PC=w
求证:u/a+v/b+w/c>=sqrt3
答案
证明:画个草图,如图.向量PG=向量PA+向量AG=向量PB+向量BG=向量PC+向量CG;以下用大写字母AB表示向量AB.
所以3PG=(PA+PB+PC)+(AG+BG+CG);如果证得AG+BG+CG=0,
即PG=(PA+PB+PC)/3.
连接线段CG,交线段AB于M,线段CM是边AB上的中线,延长CM到N,使得GM=MN,连接AN、BN,由对角线互相平分的四边行是平行四边行,AGBN是平行四边形,所以向量BG=向量NA,而向量CG=向量GN,故在三角形AGN中,AG+BG+CG=AG+GN+NA=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.