定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是_.

定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是_.

题目
定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是______.
答案
①当a=0时f(x)=-3x2在区间(-1,0)上是增函数∴a=0符合题意;②当a≠0时,f'(x)=3ax (x-2a),令f'(x)=0得:x1=0,x2=2a当a>0时,对任意x∈(-1,0),f'(x)>0,∴a>0 (符合题意)当a<0时,当 x∈(2a,...
若函数f(x)在区间(-1,0)上是增函数,则要求导函数f'(x)在区间(-1,0)大于零即可,对a的取值进行分灰讨论后,综合讨论结果,即可得到答案.

函数单调性的性质.

本题考查的知识点是函数单调性的性质及证明,其中熟练掌握函数单调性与导函数符号之间的关系是解答本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.