设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1,试证明至少存在一点ξ∈(0,1),使得f′(ξ)=1.

设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1,试证明至少存在一点ξ∈(0,1),使得f′(ξ)=1.

题目
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(
1
2
答案
令F(x)=f(x)-x,则F(x)在[0,1]上连续,在(0,1)内可导,且
F(
1
2
)=f(
1
2
)-
1
2
=
1
2

F(1)=f(1)-1=-1,
故对F(x)在[
1
2
,1]
上利用零点定理可得,
∃η∈(
1
2
,1)
,使得F(η)=0.
又因为F(0)=f(0)-0=0,
故对F(x)在区间[0,η]上利用罗尔中值定理可得,
至少存在一点ξ∈(0,η)⊂(0,1),使得F′(ξ)=0,
即:f′(ξ)=1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.