如图,△ABC中,AB>AC,AD平分∠BAC,CD⊥AD,点E是BC的中点. 求证: (1)DE∥AB; (2)DE=1/2(AB-AC).

如图,△ABC中,AB>AC,AD平分∠BAC,CD⊥AD,点E是BC的中点. 求证: (1)DE∥AB; (2)DE=1/2(AB-AC).

题目
如图,△ABC中,AB>AC,AD平分∠BAC,CD⊥AD,点E是BC的中点.
求证:

(1)DE∥AB;
(2)DE=
1
2
(AB-AC).
答案
证明:如图,延长CD交AB于点F,
∵AD平分∠BAC,
∴∠CAD=∠FAD,
∵CD⊥AD,
∴∠ADC=∠ADF=90°,
在△ADC和△ADF中,
∠CAD=∠FAD
AD=AD
∠ADC=∠ADF=90°

∴△ADC≌△ADF(ASA),
∴CD=DF,AC=AF,
∵点E是BC的中点,
∴DE是△BCF的中位线,
∴(1)DE∥AB;
(2)DE=
1
2
BF,
∵BF=AB-AF=AB-AC,
∴DE=
1
2
(AB-AC).
延长CD交AB于点F,然后利用“角边角”证明△ADC和△ADF全等,根据全等三角形对应边相等可得CD=DF,AC=AF,再根据三角形的中位线平行于第三边并且等于第三边的一半即可证明.

三角形中位线定理;全等三角形的判定与性质.

本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线并证明DE是三角形的中位线是解题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.