已知集合A={x|x2-3x+2=0},B={x|x2-2x+m=0}且A∪B=A,求m的取值范围.
题目
已知集合A={x|x2-3x+2=0},B={x|x2-2x+m=0}且A∪B=A,求m的取值范围.
答案
∵A∪B=A,∴B⊆A,
∴集合B有四种可能:∅,{1},{2},{1,2}
当B=∅时,由x2-2x+m=0无解得,4-4m<0,
∴m>1
当B={1}时,由x2-2x+m=0有唯一解x=1得m=1
当B={2}时,由x2-2x+m=0得m=0,但这时B={0,2},与A∪B=A矛盾.
综上所述,m的取值范围为[1,+∞).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点