求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正方向 为什么我算出来是pai*a的4次.和答案不一样
题目
求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正方向 为什么我算出来是pai*a的4次.和答案不一样
答案
P=-x^2y Q=xy^2
∂P/∂y=-x^2 ∂Q/∂x=y^2
根据格林公式:
∫(L)fxy^2dy-x^2ydx=∫∫(D)[y^2-(-x^2)]dxdy=∫(0,2π)dθ∫(0,a)r^3dr=πa^4/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点