设直线l过点P(-2,0)且与圆x^2+y^2=1相切 求l斜率~

设直线l过点P(-2,0)且与圆x^2+y^2=1相切 求l斜率~

题目
设直线l过点P(-2,0)且与圆x^2+y^2=1相切 求l斜率~
答案
设斜率为k:直线方程 y=kx+b ∵P∈l ∴y-0=k(x+2) => b=2k
即,方程为:kx-y+2k=0
∵圆与l相切 ∴圆心(0,0)到l距离为r (=1)
∴|k*0-1*0+2k|/√(k²+(-1)²)=1 => 4k²=k²+1 => k=±√3/3
即,斜率k为√3/3或-√3/3.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.