微分方程xdx+((x^2)•y+y^3+y)dy =0 的通解

微分方程xdx+((x^2)•y+y^3+y)dy =0 的通解

题目
微分方程xdx+((x^2)•y+y^3+y)dy =0 的通解
答案
方程化为(xdx+ydy)+y(x^2+y^2)dy=0,以1/(x^2+y^2)为积分因子,得
(xdx+ydy)/(x^2+y^2)+ydy=0
d(ln(x^2+y^2))+dy^2=0
d[ln(x^2+y^2)+y^2]=0
所以,方程的通解是ln(x^2+y^2)+y^2=C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.