为什么任意个正数的算术平均数不小于几何平均数?
题目
为什么任意个正数的算术平均数不小于几何平均数?
两个时:a^2+b^2-2ab=(a-b)^2>=0 三个时:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)>=0 那么四个以至更多时,该如何证明?(不要局部证明法)
答案
老是回答不是无操作人,就是回答过短!系统怎么会事!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点