一道数学题:F(x)=x^2+px+q.若 f(f(x))=0 仅有一实数解.求证 P>0,Q>0.

一道数学题:F(x)=x^2+px+q.若 f(f(x))=0 仅有一实数解.求证 P>0,Q>0.

题目
一道数学题:F(x)=x^2+px+q.若 f(f(x))=0 仅有一实数解.求证 P>0,Q>0.
注意第二层的定义域啊,△可以大于0啊
答案
你好.

已知F(x)=x^2+px+q,若 f(f(x))=0仅有一解,
则p^2=4q,y=-p/2
因为x^2+px+q=√q
又因为x^2+px+q-√q=0
所以 P>0,Q>0.
假设成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.