已知数列an中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n>=2,q不等与0 求数列an的通项公式

已知数列an中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n>=2,q不等与0 求数列an的通项公式

题目
已知数列an中,a1=1,a2=2,且a(n+1)=(1+q)an-qa(n-1)(n>=2,q不等与0 求数列an的通项公式
答案
a(n+1)-an=q[an-a(n-1)],{an-a(n-1)}是以1为首项q为公比的等比数列,an-a(n-1)=q^(n-1),再用叠加法可得,an=[1*(1-q^n)]/(1-q)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.