设函数f(x)=lg(x2+ax-a-1),给出如下命题: ①函数f(x)必有最小值; ②若a=0时,则函数f(x)的值域是R; ③若a>0,且f(x)的定义域为[2,+∞),则函数f(x)有反函数;

设函数f(x)=lg(x2+ax-a-1),给出如下命题: ①函数f(x)必有最小值; ②若a=0时,则函数f(x)的值域是R; ③若a>0,且f(x)的定义域为[2,+∞),则函数f(x)有反函数;

题目
设函数f(x)=lg(x2+ax-a-1),给出如下命题:
①函数f(x)必有最小值;
②若a=0时,则函数f(x)的值域是R;
③若a>0,且f(x)的定义域为[2,+∞),则函数f(x)有反函数;
④若函数f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞).
其中正确的命题序号是______.(将你认为正确的命题序号都填上)
答案
令u=x2+ax-a-1=(x+a2)2-a24-a-1≥-a24-a-1.又u>0,故u没有最小值,所以①错误;当a=0时,u=x2-1∈[-1,+∞),而(0,+∞)⊆[-1,+∞),所以②正确;当a>0时,u=x2+ax-a-1的对称轴为x=-a2<0,[2,+∞)为单...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.