(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E. (1)如图①,若点P在线段OA上,求证:∠OBP+∠AQ

(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E. (1)如图①,若点P在线段OA上,求证:∠OBP+∠AQ

题目
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.

(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
答案
(1)证明:如图①,连接OQ,
∵OB=OQ,
∴∠OBP=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
∠AOB=
1
2
×90°=45°,
∵EQ是切线,
∴∠OQE=90°,
∴∠OBP+∠AQE=∠OQB+∠AQE=90°-∠BQA=90°-45°=45°;
(2)如图②,连接OQ,
∵OB=OQ,
∴∠OBQ=∠OQB,
∵OA⊥OB,
∴∠BQA=
1
2
×(360°-90°)=135°,
∴∠OQA=∠BQA-∠OQB=135°-∠OBQ,
∵EQ是切线,
∴∠OQE=90°,
∴135°-∠OBQ+∠AQE=90°,
整理得,∠OBQ-∠AQE=45°,
即∠OBP-∠AQE=45°.
(1)连接OQ,则OQ⊥QE,根据等腰直角三角形两底角相等可得∠OBP=∠OQB,再根据∠BQA=45°,即可推出∠AQE+∠OBP=90°-∠OQA=45°;
(2)连接OQ,可得△OBQ是等腰三角形,所以∠OBQ=∠OQB,由QE是⊙O的切线可得OQ⊥QE,根据圆周角定理可得∠AQB=135°,从而得到∠OQA=135°-∠OQB,然后整理即可得到∠OBP-∠AQE=45°.

切线的性质.

此题主要考查圆的切线的性质及同圆的半径相等等知识.此题(2)问为探索题,培养同学们的类比思想和探索问题的能力,此种问题一般都是继续利用前一问的求解思路进行求解.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.