(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E. (1)如图①,若点P在线段OA上,求证:∠OBP+∠AQ
题目
(人教版)已知:OA、OB是⊙O的半径,且OA⊥OB,P是射线OA上一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E.
(1)如图①,若点P在线段OA上,求证:∠OBP+∠AQE=45°;
(2)若点P在线段OA的延长线上,其它条件不变,∠OBP与∠AQE之间是否存在某种确定的等量关系?请你完成图②,并写出结论(不需要证明).
答案
(1)证明:如图①,连接OQ,
∵OB=OQ,
∴∠OBP=∠OQB,
∵OA⊥OB,
∴∠BQA=
∠AOB=
×90°=45°,
∵EQ是切线,
∴∠OQE=90°,
∴∠OBP+∠AQE=∠OQB+∠AQE=90°-∠BQA=90°-45°=45°;
(2)如图②,连接OQ,
∵OB=OQ,
∴∠OBQ=∠OQB,
∵OA⊥OB,
∴∠BQA=
×(360°-90°)=135°,
∴∠OQA=∠BQA-∠OQB=135°-∠OBQ,
∵EQ是切线,
∴∠OQE=90°,
∴135°-∠OBQ+∠AQE=90°,
整理得,∠OBQ-∠AQE=45°,
即∠OBP-∠AQE=45°.
(1)连接OQ,则OQ⊥QE,根据等腰直角三角形两底角相等可得∠OBP=∠OQB,再根据∠BQA=45°,即可推出∠AQE+∠OBP=90°-∠OQA=45°;
(2)连接OQ,可得△OBQ是等腰三角形,所以∠OBQ=∠OQB,由QE是⊙O的切线可得OQ⊥QE,根据圆周角定理可得∠AQB=135°,从而得到∠OQA=135°-∠OQB,然后整理即可得到∠OBP-∠AQE=45°.
切线的性质.
此题主要考查圆的切线的性质及同圆的半径相等等知识.此题(2)问为探索题,培养同学们的类比思想和探索问题的能力,此种问题一般都是继续利用前一问的求解思路进行求解.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 一个上下结构的字,上面秋字,下面瓦字.这个字念什么,什么意思?大神们帮帮忙
- 已知定义在R上的函数f(x)满足:①对任意的x,y∈R,都有f(xy)=f(x)+f(y);②当x>1时,f(x)>0 (1)求证:f(1)=0; (2)求证:对任意的x∈R,都有f(1/x)=-f(
- 下列烷烃的分子式表示的不是纯净物的是 A CH4 B C2H6 C C3H8 D C4H10
- 木炭在氧气中燃烧符号表达式为什么? 2边相等的#24
- 春天的诗句和名言
- 设m>1,x,y和g都是正整数,且gcd(g,m)=1.如果x ≡y(modφ(m)),求证gx ≡gy(mod m).
- 艾青的 太阳的话 中诗歌中用第一人称有什么好处?
- 将一块体积为0.036立方分米的鹅卵石放入量杯中,水面上升了3cm,这个量杯的底面积是?
- 262又1/260*5/261简便运算怎么做!
- 天下熙熙,皆为利来;天下攘攘,皆为利往.这句话出自何处?