已知:A={x|ax^2+4x+4=0},且A∩(R+)=∅,求实数a的范围.

已知:A={x|ax^2+4x+4=0},且A∩(R+)=∅,求实数a的范围.

题目
已知:A={x|ax^2+4x+4=0},且A∩(R+)=∅,求实数a的范围.
【给思路.】
(R+)是正实数
∅是空集
答案
当a=0时,A={-1}.符合题义
当a≠0时,
(一)设ax^2+4x+4=0的根是x1,x2,根的判别式:4^2-4*a*4≥0得a≤1
因为A∩(R+)=空集即x1≤0,x2≤0,所以x1+x2≤0,x1*x2≤0即-4/a≤0,4/a≥0,得a>0
所以有:0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.