设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥
题目
设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥
答案
A^2-A = 0
A(A-E) = 0
所以 r(A)+r(A-E)=1
所以 r(A) < n.
故 (C) 正确.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点