如图,AB∥CD,E为AD上一点,且BE、CE分别平分∠ABC、∠BCD,求证:AE=ED.

如图,AB∥CD,E为AD上一点,且BE、CE分别平分∠ABC、∠BCD,求证:AE=ED.

题目
如图,AB∥CD,E为AD上一点,且BE、CE分别平分∠ABC、∠BCD,求证:AE=ED.
答案
证明:作BE的延长线交CD的延长线于F,
∵CE是∠BCD的平分线,
∴∠BCE=∠FCE,
∵AB∥CD,
∴∠F=∠FBA,
∵BE是∠ABC的平分线,
∴∠ABF=∠FBC,
∴∠FBC=∠F.
在△FCE和△BCE中
∠F=∠FBC
∠FCE=∠BCE
CE=CE

∴△FCE≌△BCE,
∴EF=BE,BC=FC,
在△AEB和△DEF中
∠AEB=∠DEF
BE=EF
∠FBA=∠F

∴△AEB≌△DEF,
∴AE=ED.
作BE的延长线交CD的延长线于F,结合条件可证明△FCE≌△BCE,得出EF=BE,BC=FC,进一步可得出△AEB≌△DEF,可得出结论.

全等三角形的判定与性质.

本题主要考查三角形全等的判定和性质,构造三角形全等找到所要证明的三角形中的线段相等是解题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.