点(a,b)在两直线y=x-1和y=x-3之间的带状区域内(含边界),则f(a,b)=a2-2ab+b2+4a-4b的最小值为_.
题目
点(a,b)在两直线y=x-1和y=x-3之间的带状区域内(含边界),则f(a,b)=a2-2ab+b2+4a-4b的最小值为______.
答案
由f(a,b)=a
2-2ab+b
2+4a-4b=(a-b)
2+4(a-b),
又点(a,b)在两直线y=x-1和y=x-3之间的带状区域内(含边界)
如下图所示:
得1≤(a-b)≤3,
根据二次函数在定区间上的最小值
知f(a,b)=a
2-2ab+b
2+4a-4b的最小值为5.
故答案为:5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点