泛函分析有界线性算子的各种收敛定义

泛函分析有界线性算子的各种收敛定义

题目
泛函分析有界线性算子的各种收敛定义
答案
比如X和Y是Banach空间,M和M_n:X-->Y是线性算子,n=1,2,……
如果对于任何x in X,y in Y^*(Y的对偶空间),有收敛到(这个是在实数或者复数域内),那么称为M_n弱收敛到M.
如果对于任何x in X,有M_n x收敛到Mx(按X中的范数),那么称为M_n强收敛到M.
所有的M_n和M都是L(X,Y)中的元素,而L(X,Y)本身也有范数,如果在这个范数下,M_n收敛到M,那么称为依范数收敛.
稍注意一下,以上三种收敛都是指 『算子』 的收敛.(如果只是给了一个Banach空间的话,其中元素的收敛只有强弱两种)
对于这三种收敛,依范数收敛可以推出强收敛,强收敛可以推出弱收敛.一般情况下都不能反过来.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.