将3个不同的小球随意放入4个不同的盒子里,则3个小球恰在3个不同的盒子内的概率为(  ) A.34 B.45 C.38 D.710

将3个不同的小球随意放入4个不同的盒子里,则3个小球恰在3个不同的盒子内的概率为(  ) A.34 B.45 C.38 D.710

题目
将3个不同的小球随意放入4个不同的盒子里,则3个小球恰在3个不同的盒子内的概率为(  )
A.
3
4

B.
4
5

C.
3
8

D. 答案
把这3个小球放如4个不同的盒子中,3个小球恰在3个不同的盒子内的方法有A43 种,
将3个不同的小球随意放入4个不同的盒子里的所有方法有43种,
则3个小球恰在3个不同的盒子内的概率为
A
3
4
43
=
3
8

故选C.
3个小球恰在3个不同的盒子内,相当于从4个盒子中选出3个进行全排列,共有A43 种方法,而将3个不同的小球随意放入4个不同的盒子里的所有方法有43种,由此求出3个小球恰在3个不同的盒子内的概率.

等可能事件的概率.

本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,求出3个小球恰在3个不同的盒子内的方法有A43 种,是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.