平面内有n(n大于等于2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)等于n(n-1)/2 数学归纳法的题

平面内有n(n大于等于2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)等于n(n-1)/2 数学归纳法的题

题目
平面内有n(n大于等于2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)等于n(n-1)/2 数学归纳法的题
答案
当n=2时,交点个数显然=n(n-1)/2 =2*(2-1)/2
假设当n=k时,交点个数为f(k)=k(k-1)/2
当n=k+1时,因为任何两条不平行,任何三条不过同一点
所以第k+1条直线与每个直线都相交,但不过每条直线与其他直线的交点
所以第k+1条直线与k条直线相交出k个交点,所以交点个数为
k(k-1)/2+k=(k+1)k/2
综上所述,平面内有n(n大于等于2)条直线,其中任何两条不平行,任何三条不过同一点,他们的交点的个数f(n)等于n(n-1)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.