如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF多少度.
题目
如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF多少度.
答案
延长EB使得BG=DF,
由
可得△ABG≌△ADF(SAS),
∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE
∴△AEG≌△AEF(SSS)
∴∠EAG=∠EAF,
∵∠DAF+∠EAF+∠BAE=90°
∴∠EAG+∠EAF=90°,
∴∠EAF=45°.
答:∠EAF的角度为45°.
延长EB使得BG=DF,易证△ABG≌△ADF(SAS)可得AF=AG,进而求证△AEG≌△AEF可得∠EAG=∠EAF,在求证∠EAG+∠EAF即可解题.
正方形的性质;全等三角形的判定与性质.
本题考查了正方形各内角均为直角,考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证∠EAG=∠EAF是解题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点