夹逼定理求极限问题…求解

夹逼定理求极限问题…求解

题目
夹逼定理求极限问题…求解
n次根号下sin^2 1+sin^2 2+……+sin^2 n 求极限,用夹逼定理,刚学高数,
答案
∵ sin²1+sin²2+……+sin²n > sin²1
sin²1+sin²2+……+sin²n < 1+1+.+1 = n
∴ (sin²1)^(1/n) < (sin²1+sin²2+……+sin²n)^(1/n) < n^(1/n)
设 un = (sin²1+sin²2+……+sin²n)^(1/n),对un取对数,则有:
2ln(sin1)/n < ln(un) < ln(n)/n
(n→∞)lim[2ln(sin1)/n] < (n→∞)lim[ln(un)] < (n→∞)lim[ln(n)/n]
∵ (n→∞)lim[2ln(sin1)/n] = 0; (n→∞)lim[ln(n)/n] =0
∴ 根据夹逼定理有:
(n→∞)lim[ln(un)] = 0 ==> (n→∞) lim(un) = e^0 =1;
结论:
(n→∞) lim[(sin²1+sin²2+……+sin²n)^(1/n)] =1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.