高数定积分证明题,

高数定积分证明题,

题目
高数定积分证明题,
求证:若f(x)在负无穷到正无穷内连续且为偶函数,则定积分(上限a,下限-a)f(x)dx=2定积分(上限a下限0)f(x)dx
答案
偶函数表示f(x)=f(-x)
左=定积分(上限a,下限-a)f(x)dx
=定积分(上限0,下限-a)f(x)dx+定积分(上限a,下限0)f(x)dx
第一个积分中令x=-x
上下限变为上限0,下限a,d(-x)=-dx
=定积分(上限0,下限a)f(-x)(-dx)+定积分(上限a,下限0)f(x)dx
=-定积分(上限0,下限a)f(x)dx+定积分(上限a,下限0)f(x)dx
上下限交换会改变符号
=定积分(上限a,下限0)f(x)dx+定积分(上限a,下限0)f(x)dx
=2定积分(上限a,下限0)f(x)dx=右
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.