函数f(x)=2sin(wx-∏/6)sin(wx+∏/3)(其中w为正常数,x∈R)的最小正周期为∏,(1)求w的值;(2)在三角形

函数f(x)=2sin(wx-∏/6)sin(wx+∏/3)(其中w为正常数,x∈R)的最小正周期为∏,(1)求w的值;(2)在三角形

题目
函数f(x)=2sin(wx-∏/6)sin(wx+∏/3)(其中w为正常数,x∈R)的最小正周期为∏,(1)求w的值;(2)在三角形
ABC中,若A
cos(-wx+π/6)=cos(wx-π/6)
这步如何得出?
答案
1、
f(x)=2sin(wx-π/6)cos[π/2-(wx+π/3)]
=2sin(wx-π/6)cos(wx-π/6)
=sin(2wx-π/3)
T=2π/2w=π
w=1
2、
f(x)=sin(2x-π/3)
所以sin(2A-π/3)=sin(2B-π/3)=1/2
A
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.