已知函数f(x)=2x-1/2|x|. (Ⅰ)若f(x)=2,求x的值; (Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

已知函数f(x)=2x-1/2|x|. (Ⅰ)若f(x)=2,求x的值; (Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

题目
已知函数f(x)=2x-
1
2|x|

(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
答案
(Ⅰ)当x≤0时f(x)=0,
当x>0时,f(x)=2x
1
2x

有条件可得,2x
1
2x
=2

即22x-2×2x-1=0,解得2x=1±
2
,∵2x>0,∴2x=1+
2
,∴x=log2(1+
2
)

(Ⅱ)当t∈[1,2]时,2t22t
1
22t
 )+m( 2t
1
2t
 )≥0

即m(22t-1)≥-(24t-1).∵22t-1>0,∴m≥-(22t+1).
∵t∈[1,2],∴-(1+22t)∈[-17,-5],
故m的取值范围是[-5,+∞).
(I)当x≤0时得到f(x)=0而f(x)=2,所以无解;当x>0时解出f(x)=2求出x即可;
(II)由 t∈[1,2]时,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)=2t
1
2t
,代入得到m的范围即可.

指数函数综合题.

本题主要考查了函数恒成立问题.属于基础题.恒成立问题多需要转化,因为只有通过转化才能使恒成立问题等到简化;转化过程中往往包含着多种数学思想的综合运用,同时转化过程更提出了等价的意识和要求.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.