在矩形ABCD中,对角线AC=10,矩形面积为25根号3,求两条对角线的夹角α的度数是多少?求具体解法
题目
在矩形ABCD中,对角线AC=10,矩形面积为25根号3,求两条对角线的夹角α的度数是多少?求具体解法
答案
设对角线交点为O,
因为矩形对角线相互平分
所以OA=OC=OD=AC/2=5,
又矩形ABCD面积=4倍△AOB面积
即25√3=4*(1/2)*OA*ODsinα=4*(1/2)*25sinα
解得sinα=√3/2
所以两条对角线的夹角α的度数是60°
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点