已知a2+b2=1,c2+d2=1,ac+bd=0,求ab+cd等于多少?

已知a2+b2=1,c2+d2=1,ac+bd=0,求ab+cd等于多少?

题目
已知a2+b2=1,c2+d2=1,ac+bd=0,求ab+cd等于多少?
答案
换元即可.
设a=sinα,b=cosα,c=sinβ,d=cosβ.
由ac+bd=0可得sinαsinβ+cosαcosβ=0,即cos(α-β)=0,所以α=π/2+β.
所以2α=π+2β.则sin(2α)=-sin(2β).
所以sin(2α)+sin(2β)=0.
则ab+cd=sinαcosα+sinβcosβ=(1/2)·sin(2α)+(1/2)·sin(2β)=0.
(注:看见平方和为零一般都用换元换成三角函数计算)
ab+cd=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.