证明1/2+cosa+cos2a+cos3a+...+cosna=[cosna-cos(n+1)a]/2(1-cos2a)谁会呀?

证明1/2+cosa+cos2a+cos3a+...+cosna=[cosna-cos(n+1)a]/2(1-cos2a)谁会呀?

题目
证明1/2+cosa+cos2a+cos3a+...+cosna=[cosna-cos(n+1)a]/2(1-cos2a)谁会呀?
答案
提供两种方法:
1、利用数学归纳法证明;
2、利用复数中的棣美佛定理.
个人主张用棣美佛定理来做比较好.
解法如下:
设z=cosα+isinα,计算z+z^2+z^3+…+z^n的时候,一方面可以利用等比数列求和来解决,另一方面还可以用棣美佛定理来解决,两者是相等,即:[z-z^(n+1]/(1-z)=(cosα+cos2α+…+cosnα)+i(sinα+sin2α+…+sinnα),式子两边的实部相等就可以解决了.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.