求解∫1/(cos^4(x)sin^2(x))dx
题目
求解∫1/(cos^4(x)sin^2(x))dx
答案
∫1/[(cosx)^4(sinx)]dx=∫[(sinx)^2+(cosx)^2]/[(cosx)^4(sinx)]dx
=∫(secx)^4dx+4∫(csc2x)^2dx
∫(secx)^4dx=∫(secx)^2[(tanx)^2+1]dx=∫[(tanx)^2+1]dtanx=(tanx)^3/3+tanx
∫(csc2x)^2dx=-1/2*cot2x
所以∫1/[(cosx)^4(sinx)]dx=(tanx)^3/3+tanx-2cot2x+C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点