(kA)*=k^(n-1)A*是怎么推得的?

(kA)*=k^(n-1)A*是怎么推得的?

题目
(kA)*=k^(n-1)A*是怎么推得的?
答案
根据伴随阵的性质 kA(kA)*=|kA|E 其中E为单位阵
kA(kA)*=k^n |A|E
A(kA)*=k^(n-1) |A|E
(kA)*=k^(n-1) A逆|A|E
又 A逆=A*/|A| 即 A逆|A|=A*
所以(kA)*=k^(n-1) A逆|A|E=k^(n-1) A*E=k^(n-1)A*
即(kA)*=k^(n-1)A*
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.