函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是( ) A.a≤2 B.a≥-2 C.-2≤a≤2 D.a≤-2或a≥2
题目
函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a的取值范围是( )
A. a≤2
B. a≥-2
C. -2≤a≤2
D. a≤-2或a≥2
答案
由题意,f(x)在(0,+∞)上为单调减函数,
从而有
或
,
解得a≤-2或a≥2,
故选D.
由已知中函数f(x)是定义在实数集R上的偶函数,根据偶函数在对称区间上单调性相反,结合f(x)上在(-∞,0]为单调增函数,易判断f(x)在](0,+∞)上的单调性,根据单调性的定义即可求得.
奇偶性与单调性的综合.
本题考查的知识点是函数单调性的应用,其中利用偶函数在对称区间上单调性相反,判断f(x)在(0,+∞)上的单调性是解答本题的关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点