若抛物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值范围是( ) A.(14,+∞) B.(34,+∞) C.(0,14) D.(14,34)
题目
若抛物线y=ax
2-1上总存在两点关于直线x+y=0对称,则实数a的取值范围是( )
A.
(,+∞)B.
(,+∞)C.
(0,)D.
(,)
答案
设抛物线上关于直线l对称的两相异点为P(x
1,y
1)、Q(x
2,y
2),线段PQ的中点为M(x
0,y
0),设
直线PQ的方程为y=x+b,由于P、Q两点存在,
所以方程组
有两组不同的实数解,即得方程ax
2-x-(1+b)=0.①
∵△=1+4a(1+b)>0.②
由中点坐标公式可得,x
0=
=
,y
0=x
0+b=
+b.
∵M在直线L上,
∴0=x
0+y
0=
+
+b,
即b=-
,代入②解得a>
.
故实数a的取值范围(
,+∞)
故选B
可设出对称的两个点P,Q的坐标,利用两点关于直线x+y=0成轴对称,可以设直线PQ的方程为y=x+b,由于P、Q两点存在,所以方程组y=x+by=ax2−1有两组不同的实数解,利用中点在直线上消去参数b,建立关于a的函数关系,求出变量a的范围.
直线与圆锥曲线的关系.
本题考查了直线与抛物线的位置关系,以及对称问题,体现了方程的根与系数关系及方程思想的应用,属于中档试题,有一定的计算量.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 英语翻译
- 财务管理-某企业现有资金100000元,可用于以下投资方案:方案A:购入国库券,5年期,年利率14%,不计复利
- 填空She said she _____ (go)to the USA the next year.
- 小红家买来一袋大米第一个月吃了5/8 第二个月吃了余下的1/4 还剩下24千克,这袋大米原来重多少千克?
- 在()里填上自然数( ),能使式子5/3小于()/7小于6/5成立
- 、 仰望天空 怎么选角度 还有 开头怎么入题?
- 什么是众数,中位数
- 纯净的碳酸氢钙试样在高温下分解,当剩余的固体质量为原来的一半时,碳酸氢钙的分解率为多少?
- 比喻句深秋,柿孑熟了,挂在树上,像什么
- 闭式单点压力机英文翻译