若抛物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值范围是(  ) A.(14,+∞) B.(34,+∞) C.(0,14) D.(14,34)

若抛物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值范围是(  ) A.(14,+∞) B.(34,+∞) C.(0,14) D.(14,34)

题目
若抛物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值范围是(  )
A. (
1
4
,+∞)

B. (
3
4
,+∞)

C. (0,
1
4
)

D. (
1
4
3
4
)
答案
设抛物线上关于直线l对称的两相异点为P(x1,y1)、Q(x2,y2),线段PQ的中点为M(x0,y0),设
直线PQ的方程为y=x+b,由于P、Q两点存在,
所以方程组
y=x+b
y=ax2−1
有两组不同的实数解,即得方程ax2-x-(1+b)=0.①
∵△=1+4a(1+b)>0.②
由中点坐标公式可得,x0=
x1+x2
2
=
1
2a
,y0=x0+b=
1
2a
+b.
∵M在直线L上,
∴0=x0+y0=
1
2a
+
1
2a
+b,
即b=-
1
a
,代入②解得a>
3
4

故实数a的取值范围(
3
4
,+∞)
故选B
可设出对称的两个点P,Q的坐标,利用两点关于直线x+y=0成轴对称,可以设直线PQ的方程为y=x+b,由于P、Q两点存在,所以方程组y=x+by=ax2−1有两组不同的实数解,利用中点在直线上消去参数b,建立关于a的函数关系,求出变量a的范围.

直线与圆锥曲线的关系.

本题考查了直线与抛物线的位置关系,以及对称问题,体现了方程的根与系数关系及方程思想的应用,属于中档试题,有一定的计算量.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.