如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.求证:∠ABD=∠ADB.
题目
如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.
求证:∠ABD=∠ADB.
答案
证明:∵在Rt△ABC中,∠BAC=90°,
∴B+∠C=90°(直角三角形的两个锐角互余);
又∠BAD=2∠C(已知),
∴∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC,
∵∠ADB=∠C+∠DAC(三角形外角性质),
∴∠ABD=∠ADB(等量代换).
根据直角三角形的两个锐角互余的性质推知B+∠C=90°;然后由已知条件∠BAD=2∠C求得∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC;最后根据△ADC的外角性质以及等量代换证得
∠ABD=∠ADB.
直角三角形的性质;三角形内角和定理;三角形的外角性质.
本题考查了三角形外角性质、直角三角形的性质.直角三角形的两个锐角互余.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点