试判断:三边长分别为2n²+2n.2n+1.2n²+2n+1(n>0)的三角形是否是直角三角形?并说明理由.

试判断:三边长分别为2n²+2n.2n+1.2n²+2n+1(n>0)的三角形是否是直角三角形?并说明理由.

题目
试判断:三边长分别为2n²+2n.2n+1.2n²+2n+1(n>0)的三角形是否是直角三角形?并说明理由.
答案
(2n²+2n+1)²-(2n²+2n)²
=[(2n²+2n+1)+(2n²+2n)][(2n²+2n+1)-(2n²+2n)]
=(4n²+4n+1)×1
=(2n+1)²
所以(2n²+2n+1)²-(2n²+2n)²=(2n+1)²
所以(2n²+2n+1)²=(2n²+2n)²+(2n+1)²
所以是直角三角形
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.