e^(1/x)积分的结果是什么?如果不是初等函数,那么能用其他函数表示吗?

e^(1/x)积分的结果是什么?如果不是初等函数,那么能用其他函数表示吗?

题目
e^(1/x)积分的结果是什么?如果不是初等函数,那么能用其他函数表示吗?
答案
这个结果不是初等函数.
下面很简单说明这不是初等函数的原因.
令t=1/x,则x=1/t,dx = d(1/t) = -1/(t^2)dt
原不定积分= ∫ e^t * (-1/(t^2)) dt = - ∫ e^t/t^2 dt
根据分部积分法 ∫ udv = uv - ∫ vdu,得
∫ 1/t^2 d(e^t) =- ∫ 1/t^2 d(e^t)
= e^t/t^2 - ∫ e^t d(1/t^2) = e^t/t^2 - ∫ e^t * (-1/(t^3)) dt
=e^t/t^2 + ∫ e^t /t^3 dt
因此 原不定积分 = - ∫ 1/t^2 d(e^t)= -(e^t/t^2 + ∫ e^t /t^3 dt)
又可以继续对∫ e^t /t^3 dt进行分部积分,如此不断,直至无穷.
事实上把 ∫ e^t/t^2 dt 中的t的指数改成1后,∫ e^t/t dt 同样可以进行如上的分部积分.
因此∫ e^t/t dt 是一个无穷级数,∫ e^t/t dt = e^t/t + e^t/t^2 + e^t/t^3 + ...
(直觉上具有这种无穷级数形式的就不是初等函数了~)
用Risch算法可以说明e^t/t的原函数不是任何初等函数的组合,不是初等函数.
对∫ e^t/t dt 分部积分得:
∫ e^t/t dt = e^t/t + ∫ e^t /t^2 dt
因此∫ e^t /t^2 dt = ∫ e^t/t dt - e^t/t
既然∫ e^t/t dt 不是初等函数,那么它减去一个初等函数后也不是初等函数
因此∫ e^t /t^2 dt 也不是初等函数
因此原不等积分
∫ e^(1/x) dx = ∫ e^t /t^2 dt = ∫ e^t/t dt - e^t/t = ∫ e^t/t dt - xe^(1/x) 也不是初等函数
其中,∫ (负无穷到x) e^t/t dt 常用 Ei (x)表示,只能用初等函数(例如多项式)逼近
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.