f(x)=x+a,f(x)=x+∫f(t)dt(上限2下限0),a=

f(x)=x+a,f(x)=x+∫f(t)dt(上限2下限0),a=

题目
f(x)=x+a,f(x)=x+∫f(t)dt(上限2下限0),a=
答案
f(x)=x+a
∫(0->2)f(t)dt
=∫(0->2)(t+a)dt
=∫(0->2)tdt+∫(0->2)adt
=t^2/2|(0->2)+at|(0->2)
=2+2a
f(x)=x+∫f(t)dt(上限2下限0)
=x+2+2a=x+a
2+2a=a
a=-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.