“贝特朗问题”:在半径为1的圆内随机地取一条弦,则其长超过该圆内接等边三角形的边长的概率是多少?

“贝特朗问题”:在半径为1的圆内随机地取一条弦,则其长超过该圆内接等边三角形的边长的概率是多少?

题目
“贝特朗问题”:在半径为1的圆内随机地取一条弦,则其长超过该圆内接等边三角形的边长的概率是多少?
请各位好汉告诉我解题过程和答案.非常感谢
答案
贝特朗(Brtrand)奇论 几何概率在现代概率概念的发展中曾经起过重大作用.19世纪时,不少人相信,只要找到适当的等可能性描述,就可以给概率问题以唯一的解答,然而有人却构造出这样的例子,它包含着几种似乎都同样有道理...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.