作图,三等分任意角,据说不可能,怎么证明?

作图,三等分任意角,据说不可能,怎么证明?

题目
作图,三等分任意角,据说不可能,怎么证明?
答案
凡齐尔用代数的方法证明:
抽象代数上有这样一个定理:如果复数z可以用尺规从S0={0,1,z1,...,zn}作出,则z是域F=Q(z1,...,zn,z1~,...,zn~)上的一个代数元且z的次数为2的方幂.其中z1~,...,zn~分别是z1,...,zn的共轭.
三等分任意角就是用尺规从{0,1,a}作出b,其中a=4b^3-3b.
于是b是方程f(x)=4x^3-3x-a=0的根,我们指出f(x)在Q(a)上不可约.
取特殊值a=1/2(即60度角),则Q(a)=Q(1/2)=Q(有理数),f(x)=4x^3-3x-1/2=((2x)^3-3(2x)-1)/2,显然f(x)在Q上不可约.
所以,一般情况的f(x)在Q上也是不可约的.由此可知b是Q(a)上的三次代数元.根据一开始的定理,得到结论:cos(m/3)用尺规从{0,1,cosm}作出一般说来是不可能的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.